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Abstract

This paper severs as a user guide to the graph clustering framework VieClus (Vienna Graph Clustering). We
give a rough overview of the techniques used within the framework and describe the user interface as well as the
file formats used.
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1 Introduction

Graph clustering is the problem of detecting tightly connected regions of a graph. Depending on the task, knowl-
edge about the structure of the graph can reveal information such as voter behavior, the formation of new trends,
existing terrorist groups and recruitment [18] or a natural partitioning of data records onto pages [9]. Further ap-
plication areas include the study of protein interaction [17], gene expression networks [21], fraud detection [1],
program optimization [14, 8] and the spread of epidemics [15]—possible applications are plentiful, as almost all
systems containing interacting or coexisting entities can be modeled as a graph.

It is common knowledge that there is no single best strategy for graph clustering, which justifies a plethora
of existing approaches. Moreover, most quality indices for graph clusterings have turned out to be NP-hard to
optimize and are rather resilient to effective approximations, see e.g. [2, 7, 20], allowing only heuristic approaches
for optimization. The majority of algorithms for graph clustering are based on the paradigm of intra-cluster density
versus inter-cluster sparsity. One successful heuristic to cluster large graphs is the multi-level approach [6], e.g. the
Louvain method for the optimization of modularity [5]. Here, the graph is recursively contracted to obtain smaller
graphs which should reflect the same general structure as the input. After applying an initial clustering algorithm to
the smallest graph, the contraction steps are undone and, at each level, a local search method is used to improve the
clustering induced by the coarser level w.r.t some objective function measuring the quality of the clustering. The
intuition behind this approach is that a good clustering at one level of the hierarchy will also be a good clustering
on the next finer level. Hence, depending on the definition of the neighborhood, local search algorithms are able to
explore local solution spaces very effectively in this setting. However, these methods are also prone to get trapped
in local optima. The multi-level scheme can help to some extent since local search has a more global view on the
problem on the coarse levels and a very fine-grained view on the fine levels of the multi-level hierarchy. In addition,
as with many other randomized meta-heuristics, several repeated runs can be made in order to improve the final
result at the expense of running time.

Still, even a large number of repeated executions can only scratch the surface of the huge search space of
possible clusterings. In order to explore the global solution space extensively, we need more sophisticated meta-
heuristics. This is where memetic algorithms (MAs), i.e. genetic algorithms combined with local search [13],
come into play. Memetic algorithms allow for effective exploration (global search) and exploitation (local search)
of the solution space. The general idea behind genetic algorithms is to use mechanisms inspired by biological
evolution such as selection, mutation, recombination, and survival of the fittest. A genetic algorithm (GA) starts
with a population of individuals (in our case clusterings of the graph) and evolves the population over several
generational cycles (rounds). In each round, the GA uses a selection rule based on the fitness of the individuals of
the population to select good individuals and combines them to obtain improved offspring [10]. When an offspring
is generated an eviction rule is used to select a member of the population to be replaced by the new offspring. For
an evolutionary algorithm it is of major importance to preserve diversity in the population [3], i.e., the individuals
should not become too similar in order to avoid a premature convergence of the algorithm. This is usually achieved
by using mutation operations and by using eviction rules that take similarity of individuals into account.

Here we release a memetic algorithm, VieClus (Vienna Graph Clustering), to tackle the graph clustering prob-
lem. A key component of our contribution are natural recombine operators that employ ensemble clusterings as
well as multi-level techniques. In machine learning, ensemble methods combine multiple weak classification (or
clustering) algorithms to obtain a strong algorithm for classification (or clustering). More precisely, given a number
of clusterings, the overlay/ensemble clustering is a clustering in which two vertices belong to the same cluster if
and only if they belong to the same cluster in each of the input clusterings. Our recombination operators use the
overlay of two clusterings from the population to decide whether pairs of vertices should belong to the same clus-
ter [16, 19]. This is combined with a local search algorithm to find further improvements and also embedded into a
multi-level algorithm to find even better clusterings. Our general principle is to randomize tie-breaking whenever
possible. This diversifies the search and also improves solutions. Lastly, we combine these techniques with a scal-
able communication protocol, producing a system that is able to compute high-quality solutions in a short amount
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of time. In our experimental evaluation, we show that our algorithm successfully improves or reproduces all entries
of the 10th DIMACS implementation challenge under consideration in a small amount of time. In fact, for most of
the small instances, we can improve the old benchmark result in less than a minute. Moreover, while the previous
best result for different instances has been computed by a variety of solvers, our algorithm can now be used as a
single tool to compute the result. For more details, we refer the reader to [4].

2 Graph Format

2.1 Input File Format

2.1.1 Metis File Format

The graph format used by our clustering programs is the same as used by Metis [12], Chaco [11] and the graph for-
mat that has been used during the 10th DIMACS Implementation Challenge on Graph Clustering and Partitioning.
The input graph has to be undirected, without self-loops and without parallel edges.

To give a description of the graph format, we follow the description of the Metis 4.0 user guide very closely.
A graph G = (V,E) with n vertices and m edges is stored in a plain text file that contains n + 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remaining n
lines contain information for each vertex of G. Any line that starts with % is a comment line and is skipped. The
first line in the file contains either two integers, n m, or three integers, n m f . The first two integers are the number
of vertices n and the number of undirected edges of the graph, respectively. Note that in determining the number
of edges m, an edge between any pair of vertices v and u is counted only once and not twice, i.e. we do not count
the edge (v, u) from (u, v) separately. The third integer f is used to specify whether or not the graph has weights
associated with its vertices, its edges or both. If the graph is unweighted then this parameter can be omitted. It
should be set to 1 if the graph has edge weights. The remaining n lines of the file store information about the actual
structure of the graph. In particular, the ith line (again excluding comment lines) contains information about the ith
vertex. Depending on the value of f , the information stored in each line is somewhat different. In the most general
form (when f = 1, i.e. we have edge weights) each line has the following structure:

v1w1 v2w2 . . . vk wk

6615441221

6715

4 1 7 1 6 1

154

14

7

3

13

2

1 1 3 3 7 1

2712

72

1

6

543
1

43

1

1

21

1

1

6

7 10 11

Figure 1: An example graph and its representation in the graph format. The IDs of the vertices are drawn within
the cycle, the vertex weight is shown next to the circle (red) and the edge weight is plotted next to the edge (blue).
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where v1, . . . , vk are the vertices adjacent to this vertex, and w1, . . . , wk are the weights of the edges. Note that
the vertices are numbered starting from 1 (not from 0). Furthermore, the vertex-weights must be integers greater or
equal to 0, whereas the edge-weights must be strictly greater than 0.

2.2 Output File Formats

2.2.1 Clustering

The output format of a clustering is similar to the output format of a partition provided by Metis. It is basically a
text file named tmpclustering. This file contains n lines. In each line the block ID of the corresponding vertex is
given, i.e. line i contains the block ID of the vertex i (here the vertices are numbered from 0 to n − 1). The block
IDs are numbered consecutively from 0 to n− 1.

2.3 Troubleshooting

VieClus should not crash! If VieClus crashes it is mostly due to the following reasons: the provided graph contains
self-loops or parallel edges, there exists a forward edge but the backward edge is missing or the forward and
backward edges have different weights, or the number of vertices or edges specified does not match the number of
vertices or edges provided in the file. Please use the graphchecker tool provided in our package to verify whether
your graph has the right input format. If our graphcheck tool tells you that the graph that you provided has the
correct format and VieClus crashes anyway, please write us an email.
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3 User Interface

VieClus contains the following programs: vieclus, graphchecker, evaluator. To compile these programs you need
to have Argtable, g++, OpenMPI and scons installed (we use argtable-2.10, g++-4.8.0, OpenMPI-1.4.1 and scons-
1.2). Once you have that you can execute compile.sh in the main folder of the release. When the process is finished
the binaries can be found in the folder deploy. We now explain the parameters of each of the programs briefly.

3.1 VieClus

Description: This is the distributed memetic algorithm to tackle the graph clustering problem.

Usage:
mpirun -n P vieclus file [--help] [--seed=<int>] [--time_limit=<double>] [--output_filename=<string> ]

Options:

P Number of processes to use.
file Path to graph file that you want to cluster.
--help Print help.
--seed=<int> Seed to use for the random number generator.
--time_limit=<double> Time limit in seconds s. The default value is set to 0s, i.e. one clustering call will

be made by each PE. In order to use combine operations you have to set a time
limit t > 0. VieClus will return the best solution after the time limit is reached. A
time limit t = 0 means that the algorithm will only create the initial population.

--output_filename=<string> Specify the output filename (default tmpclustering).

3.2 Graph Format Checker

Description: This program checks if the graph specified in a given file is valid.

Usage:
graphchecker file

Options:

file Path to the graph file.

3.2.1 Evaluation

Description: This is the program to compute the modularity of a clustering.

Usage:
./evaluator file --input_partition=<string>

Options:

file Path to graph file
--input_partition=file Path to clustering file to evaluate.
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